

Entrainment at the Mold Surface Due to High-Velocity Shear Flow

Lance C. Hibbeler (MSME/Ph.D. Student)

Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign

Wherever there is a slag layer, slag can become entrained

- A challenge to clean steel production is to avoid slag entrainment into the steel in all steps of the steelmaking and casting process
 - Blast furnaces
 - Ladles
 - Tundish
 - Mold
- This work focuses on the mold, and specifically the shear-related stability of the slag-metal interface

Metals Processing Simulation Lab

University of Illinois at Urbana-Champaign

Mold Slag Entrainment Mechanism: von Kármán Vortexing

- Flow past the SEN creates vorticity in the plane of the meniscus (von Kármán vortex)
- The downward motion necessary to form a vortex is created where the opposing roll flow patterns meet
- Stronger asymmetric flow increases vortex formation frequency and size
 - He, ISIJ Int., 33:2 (1993), pg. 343
- Vortex depth given by:

$$h_{v} = \frac{\rho_{\ell}}{(\rho_{\ell} - \rho_{u})} \frac{v_{mc}^{2}}{g} + \alpha \left[\frac{\rho_{u} \Delta v_{s}^{2}}{g(\rho_{\ell} - \rho_{u})} \right]^{0.55} \qquad \alpha = 0.0562 \text{ m}^{0.45}$$

Kasai and Iguchi, ISIJ Int., 47:7 (2007), pg. 982

 Avoid entrainment with SEN immersion depth greater than vortex depth

Lance C. Hibbeler

5

6

Mold Slag Entrainment Mechanism: Narrow Face Spout Impinging Flow

Mold Slag Entrainment Mechanism: Standing Meniscus Wave Instability

- Standing wave at meniscus goes unstable at too-high a height-to-length ratio
- Wavelength can be taken as distance from SEN to narrow face. Many models can predict the meniscus standing wave height
- Avoid entrainment by respecting Rottman's ratio to keep the standing wave stable (usually easy)

$$\left(\frac{h_{meniscus}}{\lambda_{meniscus}}\right)_{critical} = 0.21 + 0.14 \left(\frac{\rho_u}{\rho_\ell}\right)^2$$

Rottman, J. Fluid Mech., 124 (1982), pg. 283

$$h_{meniscus} = 0.31 \frac{V_{port}^2}{g} \frac{D_{port}}{L_c} \frac{\rho_\ell + \rho_u}{\rho_\ell - \rho_u}$$

Theodorakakos and Bergeles, Metall. Mat. Trans., 29B:6 (1998), pg. 1321

Lance C. Hibbeler

Mold Slag Entrainment Mechanism: Interfacial Shear

The highest sub-meniscus velocity can cause a shear instability at slag-metal interface

Similar phenomenon in ladle "eyes"
Influenced by magnetic field

No conclusive investigations yet performed, though many researchers indicate this is an entrainment mechanism
Some water model experiments match Milne-Thomson's equation: (ΔV_{cru})² = (ρ_c - ρ_u)g(H_u + H_c)/(ρ_u + H_c)

Metals Processing Simulation Lab

University of Illinois at Urbana-Champaign

Inclusion Formation Mechanism: Meniscus Balding

 Excessive argon flow rates and narrow face spout velocity can expose the liquid steel to the powder layer and/or atmosphere

Lance C. Hibbeler

9

Safe Operating Window(s): Argon Flow Rate and EMBr

Too Little	Argon Flow Rate f(EMBr, h _{SEN} , w _{slab} , V _c)	Too Much			
Nozzle clogging Exposure to ambient air in SEN Vortex formation		Meniscus fluctuations Slag foaming Meniscus balding			
Too Little		Too Much			
Too Little		<i>Too Much</i> Revert to single roll flow			
Too Little	EMBr	<i>Too Much</i> Revert to single roll flow Meniscus fluctuations			
Too Little No benefit	EMBr f(Q _{Ar} , w _{slab} , V _c , h _{SEN})	Too Much Revert to single roll flow Meniscus fluctuations Complex flow			
Too Little No benefit	EMBr f(Q _{Ar} , w _{slab} , V _c , h _{SEN})	Too Much Revert to single roll flow Meniscus fluctuations Complex flow Meniscus freezing			

University of Illinois at Urbana-Champaign

Metals Processing Simulation Lab

Lance C. Hibbeler • 11

Safe Operating Window(s): SEN Design and Operation

Too Little (Shallow)		Too Much (Deep)
Shear entrainment Meniscus fluctuations Slag crawling Vortex formation	SEN Immersion Depth f(Q _{Ar} , EMBr, w _{slab} , V _c)	Meniscus freezing Hook formation Shell remelting too low

Too Little (Deep) 🔍		Too Much (Shallow) \prec
Hook formation No inclusion floatation	SEN Port Angles f(V _c , h _{SEN} , superheat)	Single roll flow pattern Meniscus balding Vortex formation

For more on SEN design, see Najjar, Thomas, and Hershey, Metall. Mat. Trans. 26B:4 (1995), pg. 749

• 12

.

Safe Operating Window(s): **Slag Layer Properties**

Too Little (Weak)	Steel/Slag Interfacial Tension	Too Much (Strong)		
Shear entrainment Slag foaming		Unable to capture bubbles and inclusion particles		
Too Little (Thin)	Slag Layer Thickness	Too Much (Thick)		
Excessive heat loss		Large slag rims		
Meniscus balding		Shear entrainment		
Too Little (Light)	Slag Layer Density	Too Much (Heavy)		
Slag foaming?		No stratification		
		Large meniscus wave		
		Shear entrainment		
		Vortex formation		
Too Little (Thin)	Slag Viscosity	Too Much (Thick)		
Shear entrainment		Slag foaming		
University of Illinois at Urbana-Champaign	Metals Processing Simulation Lab	• Lance C. Hibbeler • 13		

Casting

onsortium

Slag Entrainment Model

- The goal of this work is to investigate shear-based slag entrainment mechanisms with numerical models
- Mass conservation: Continuity $\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = S$
- Momentum conservation: Navier-Stokes $\rho \frac{Dv}{Dt} = \nabla \otimes \mathbf{v}$)^T

$$-\nabla p + \nabla \cdot (2\mu \mathbf{D}) + \rho \mathbf{b} \qquad \mathbf{D} = \frac{1}{2} \lfloor (\nabla \otimes \mathbf{v}) + (\nabla \nabla \mathbf{v}) \rfloor + (\nabla \nabla \nabla \mathbf{v}) + (\nabla \nabla \nabla \mathbf{v}) \rfloor$$

Interfacial compatibility

$\boldsymbol{v}_A = \boldsymbol{v}_B$

- Interfacial force balance: Generalized Young-Laplace $2\mu_{A}\mathbf{D}_{A}\cdot\boldsymbol{n}-2\mu_{B}\mathbf{D}_{B}\cdot\boldsymbol{n}-(p_{A}-p_{B})\boldsymbol{n}=2\kappa_{m}\Gamma_{AB}\boldsymbol{n}+\nabla_{surf}(\Gamma_{AB})$
- Use the commercial CFD program FLUENT 6.3
 - Advection discretization scheme: 3rd-order MUSCL
 - Pressure-velocity coupling: Pressure Implicit w/ Splitting of Operators
 - Multiphase model: Volume-of-Fluid (assume interface at VOF=0.5)
 - Interfacial tension model: Continuum Surface Force

14

Stability of a Stratified Shear Layer: Kelvin-Helmholtz Instability

- Interfacial stability of two parallel-flowing, inviscid, irrotational, incompressible, semi-infinite fluids
- Predicts the increase in velocity at the interface at which small waves grow without bound

- · Constant density
- Inviscid liquids
- Step change in velocity and density at interface
- Initially perturbed interface
 - Volume fraction field only
 - Sinusoid, varying frequency
 - Amplitude of one cell height
- Brute-force search for the neutral stability curve

- Correct prediction of Kelvin-Helmholtz instability shows model validation
- More realistic simulations coming

.

.

Acknowledgements

- Continuous Casting Consortium Members (ABB, Arcelor-Mittal, Baosteel, Corus, Delavan/Goodrich, LWB Refractories, Nucor, Nippon Steel, Postech, Steel Dynamics, ANSYS-Fluent)
- National Center for Supercomputing Applications (NCSA) at UIUC – "Tungsten" cluster
- Professor S. Pratap Vanka
- Rajneesh Chaudhary

University of Illinois at Urbana-Champaign

Metals Processing Simulation Lab

Lance C. Hibbeler • 23